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ABSTRACT

Predicting global solar radiation is an integral part of much environmental modeling. There are several

approaches for predicting global solar radiation at a site where no instrumentation exists. One popular ap-

proach uses the difference between daily high and low temperature, typically using a nonlinear equation to

express the relationship between change in temperature and estimated global solar radiation. Additional

variables are usually included in successive steps creating a hierarchy of analysis. The authors propose an

alternative beta regression approach to modeling global solar radiation, allowing for the inclusion of multiple

environmental predictor variables and strata into one flexible model. The model is applied to several case

studies, and results are compared with recently proposed empirical solar radiation models. Beta regression

provides a robust, flexible modeling approach for predicting global solar radiation that allows for the addition

and removal of independent variables as appropriate and can be interpreted using standard inferential sta-

tistics. In addition, the beta regression model provides estimates of uncertainty that can be incorporated into

subsequent models and calculations.

1. Introduction

Predictions of solar radiation are a requisite to models

of soil moisture (Spokas and Forcella 2006), carbon flux

and plant growth (vanDijk et al. 2005), wildlife behavior

(Keating et al. 2007), evapotranspiration (Hargreaves

and Samani 1982), weed management (Spokas and

Forcella 2006), hydrology (Lindsey and Farnsworth

1997), and others. Numerous models have been pro-

posed to predict solar radiation at ungauged locations

because of the frequent lack of instrumentation to di-

rectly measure it (Thornton and Running 1999). One

common approach is to use the difference between the

daily maximum and the daily minimum temperature

DT at a location as a means to predict the fraction of

solar radiation that reaches Earth’s surface. To date,

a wide variety of models have been implemented that

predict solar radiation based on observations of DT.
One of the earliest was proposed by Hargreaves and

Samani (1982). Bristow and Campbell (1984) proposed

a model where transmissivity is a function of DT
smoothed across two days. Richardson (1985) pro-

posed a simple model where DT is a function of two

site-specific empirical parameters and extraterrestrial

radiation. Liu and Scott (2001) compare nine models

that predict solar radiation, three of which use only DT,
two that use only precipitation, and four that use both.

Thornton and Running (1999) proposed a DT method

enhanced with precipitation and dewpoint data. Samani

et al. (2011) propose a modified version of Allen (1997),

a model self-calibrated by season and location. A non-

linear equation is used in each of these to model the

relationship between DT and solar radiation.

Fodor and Mika (2011) compared a four-parameter

‘‘S shaped’’ function borrowed from soil science with

Donatelli and Campbell (1998)’s function for predicting

the fraction of solar radiation that hits Earth’s surface.

This fraction, called fraction of clear day (FCD), is ex-

pressed as the percentage of solar radiation that reaches

Earth’s surface on a clear day. This latter value is re-

ferred to as clear-sky transmissivity (CST) and is de-

scribed in detail, along with FCD, in section 2. Fodor

and Mika (2011) correctly noted that earlier models

(Bristow and Campbell 1984; Donatelli and Campbell

1998) forced the relationship between DT and FCD

through the origin; FCD cannot ever be zero (except
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perhaps in the polar winters). Fodor and Mika (2011)

then proposed a four-parameter sinusoidal curve and

found it produces smaller prediction errors when

compared with Donatelli and Campbell (1998).

All solar radiation models are limited by the available

observations for model fitting. Gueymard and Myers

(2009) described three levels of stations that collect solar

radiation data: 1) solar monitoring sites use inexpensive

and automated instrumentation to provide local data

quickly for a minimal cost, 2) conventional long-term

measurements use proven techniques and are generally

operated by weather service agencies, and 3) research

sites are typically developed by atmospheric physicists or

climatologists to obtain the highest accuracy possible to

detect trends or test theoretical solar radiation models.

These research sites have higher levels of redundancy

with respect to instrumentation and power supply. Typi-

cally,DTmodels are developed and tested on high-quality

data collected at research sites. Spokas and Forcella

(2006) used data from 16 research sites throughout North

America, Sweden, and Australia. Thornton and Running

(1999) and Fodor and Mika (2011) used data from the

Solar and Meteorological Surface Observation Network

(SAMSON) database that included up to 109 stations

from around the United States. Liu and Scott (2001) used

39 research sites distributed throughoutAustralia. Bristow

and Campbell (1984) developed their model at three

different locations in the northern United States. Using

(relatively) independent sites with high-quality data to

formulate predictive equations provides a strong basis

for model development and assessment. However, data

from solar monitoring sites allow for the investigation of

spatial characteristics not possible when data collection

is limited to research sites. Thus there remains a need

for flexible modeling frameworks that can be applied to

all sites that collect solar radiation data. This requires

a model that is robust when analyzing small datasets or

allows for combining previously separate analyses.

In this study, we implement a beta regression model

to facilitate prediction of incoming solar radiation at

ungauged locations or to fill gaps due to power or equip-

ment failure in existing datasets. The intent of this study

is not to develop a widely transferable model with fixed

parameters, but rather establish a flexible method that

allows researchers to add or remove variables based on

local availability and appropriateness. The model also

provides valid estimates of uncertainty and relatively

unbiased predictions. Confidence intervals and capture

rates are reported to emphasize and illustrate estimates

of uncertainty. Interpretable parameters are obtainable

using beta regression; however, higher-order models and

models with explanatory variables that display multi-

collinearity can lead to erroneous results. The emphasis

herein is on predicting global solar radiation. We con-

sider the application of beta regression in the context

of solar monitoring networks. As with previous models,

the beta regression model we propose does not directly

model global solar radiation but rather FCD. Detailed

discussion of DT models, the deconstruction of global

solar radiation, and beta regression follows.

2. A review of DT models for solar radiation
prediction

Global solar radiation (GSR) can be broken down

into three components. Extraterrestrial radiation (ETR)

is the amount of solar radiation that hits the outside

of the atmosphere. CST is the amount of ETR that will

reachEarth’s surface on a clear day. FCD is the fraction of

CST that hits Earth’s surface on any given day. The DT
models take advantage of this deconstruction and relate

the difference of high and low daily temperature to FCD.

The suite of current DT models (Fodor and Mika 2011;

Bristow and Campbell 1984; Donatelli and Campbell

1998) for predicting FCD, and subsequently GSR, can

largely be described by the following sequence of analysis:

1) Determine ETR at a given site using geographical

location, time of day, and time of year (e.g., Gates

1980).

2) For each day of the year (denoted yearday), estimate

CST. This can be predicted empirically using histor-

ical data or can be modeled (e.g., using Fourier series)

with shorter historical datasets.

3) For each day in a given dataset, divide measured

daily GSR by CST to determine FCD.

4) Calculate DT for each day in the given dataset. The

simple calculation (Hargreaves and Samani 1982) is

DTi5Ti
max2Ti

min , (1)

where i 5 the ith day of the dataset.

A smoothed calculation first proposed by Bristow

and Campbell (1984) and used frequently is

DTi 5Ti
max2 0:5(Ti

min 1Ti11
min) . (2)

5) Plot FCD versus DT and fit a nonlinear curve.

6) For any day at this or any nearby location, if GSR is

unknown and DT is known, then GSR can be pre-

dicted using the fitted value for FCDand the following

relationship:

dGSR5ETR3CST3FCD
(fitted) . (3)

It is assumed that the procedures in step 1 are well

established (Gates 1980). For step 2, if a sufficiently long
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dataset exists then CST can be obtained empirically.

Thornton and Running (1999) use a moving window

that encompasses 7 days (3 before and 3 after) for each

yearday to empirically derive CST while also proposing

a way to derive CST with no solar radiation data from

a site. Fodor and Mika (2011) suggest using a Fourier

series to model CST using the maximum values for each

yearday in a dataset. For step 3, the DT value [Eq. (2)]

suggested by Bristow andCampbell (1984) has been used

by several subsequent studies (Fodor and Mika 2011);

however, Thornton and Running (1999) found that using

nonsmoothed values [Eq. (1)] led to less error.

Step 5, modeling the relationship between FCD and

DT, is the most contested aspect of the above algorithm,

and comparisons of methods are typically done using

root-mean-square error (RMSE), mean signed deviance

(MSD), or mean absolute error (MAE) (Donatelli and

Campbell 1998; Fodor and Mika 2011). The traditional

justification for fitting DT models is that the model is

useful for prediction purposes. Little effort is spent in-

terpreting the fitted parameters in part because inter-

preting the coefficients would not yield better predictions

of FCD. Additionally, interpreting parameters of these

models is difficult or impossible. Fodor and Mika (2011)

make no attempt to interpret parameters using a simpli-

fied soil water retention curve. The emphasis here will be

on prediction as well. Typically, predicted FCD values

are inputted at Eq. (3) for steps 5 and 6 with no regard for

estimates of uncertainty in the predicted values. Result-

ingGSRpredictions are then reportedwithout prediction

intervals. Attempts to spatially interpolate parameters

and/or final GSRpredictions (step 6) are done as if known

measured values are being presented (Fodor and Mika

2011; Thornton and Running 1999; Thornton et al. 2000).

3. A review of beta regression

Beta regression provides a framework for modeling

continuous variables constrained in the standard unit

interval (0, 1) (Ferrari and Cribari-Neto 2004). A nec-

essary assumption is that the response variable is beta

distributed with a mean that can be related to a set of

regressors with estimable coefficients and a link func-

tion. The beta distribution is a continuous probability

distribution defined on the interval between 0 and 1 and its

probability density function is traditionally expressed as

f (y; p, q)5
G(p1 q)

G(p)G(q)
yp21(12 y)q21, 0, y, 1, (4)

with shape parameters p and q . 0, and where G() is
the gamma function. Ferrari and Cribari-Neto (2004)

reparameterized the beta distribution by setting m5 p/

(p 1 q) and u 5 p 1 q. This yields

f (y; m, f)

5
G(f)

G(mf)G[(12m)f]
ymf21(12 y)(12m)f21, 0, y, 1,

(5)

where 0 , m , 1 and u . 0. As in the original param-

eterization, G() is the gamma function. The expected

value of y ism, orE(y)5m. The parameteru is known as

the precision parameter since for fixed m, larger u gives

smaller variance for the distribution. A beta-distributed

variable can be denoted as y ; b(m, f). In matrix no-

tation, beta regression is then represented as

g(mi)5 xTi b5hi , (6)

where b5 (b1, . . . , bk)
T is a k 3 1 vector of unknown

regression parameters, xi 5 (xi1, . . . , xik)
T is a vector of

k regressors, or independent variables, g(m) is a link

function (in this case the logit link), and hi is a linear

predictor. Since the variance of y is a function of m, the

regression model is naturally heteroscedastic with

Var(yi)5
ui(12 ui)

11f
. (7)

Beta regression provides an effective framework for

modeling bounded environmental variables, such as

FCD, when standard regression techniques are likely

inappropriate. Assumptions of normality are usually

incorrect because truncation of the response value

makes even an approximate normal distribution un-

likely. Almost by definition they display a large amount

of heteroscedasticity with more variation around the

midpoint and less close to 0 or 1. Like most proportion

data, FCD distributions tend to be asymmetric, which

leads to issues with confidence intervals and hypothesis

testing. Beta regression addresses all of these issues

(Ferrari and Cribari-Neto 2004). Further, functions to

perform beta regression are now readily available in

popular software programs (Cribari-Neto and Zeileis

2010). The flexibility of beta regression is easily dem-

onstrated bymodeling predictions of FCDusing a set of

climate variables that are regularly collected at weather

stations as regressors. Unlike previously proposedmethods,

beta regression is not limited to one independent var-

iable and all standard regression inferences can be

made when fitting FCD versus DT, or any combination

of climate variables available to the researcher.
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In this study, a new flexible DT model using beta re-

gression is compared with the Fodor and Mika (2011)

model using data froma network of solarmonitoring sites

throughout North and South Dakota. Points of analysis

include

1) comparison of standard indicators of fit such as

RMSE, MAE, and MSD;

2) comparison of ease of fitting and determination of

robustness for both methods (i.e., do respective algo-

rithms converge; are model parameters easily

identifiable?);

3) comparison of reliability of prediction intervals for

FCDand demonstration of how to estimate prediction

error of GSR using the variance of predicted FCD;

4) discussion of interpretation of the model parameters;

5) determination of whether modifications to the stan-

dard design of the beta regression model are neces-

sary for improved model predictions, including data

stratification.

4. Materials and methods

a. Data and site description

The study area is composed of North and South Da-

kota in the north-central United States. These states

have distinct continental climate with very cold winters

and hot semihumid summers, although the western part

of North Dakota is considered semiarid. The highest

recorded temperature in either state is 498C and the

coldest is2518C. The average annual precipitation ranges
from 35 to 75 cm throughout the study area.

Data from 99 Automated Weather Data Network

(AWDN) (Fig. 1) operated by the High Plains Regional

Climate Center were inspected for quality and quantity

(length of data series and amount of missing data).

Standard weather variables collected at the AWDN

sites include (but are not limited to) daily high tempera-

ture, daily low temperature, relative humidity, and pre-

cipitation. Seven sites had a substantial amount ofmissing

data and were dropped from the analysis. Chosen for

comparison were 92 sites (Table 1) inside of North and

South Dakota and two in Montana very near the border

of North Dakota. All data denoted as bad, missing, or

imputed (You et al. 2008) were removed. Three sites

were chosen to demonstrate a variety of attributes con-

cerning the data, as well as analysis of results. These are

the Redfield, Takini, and Brookings sites in South Da-

kota. The total area that can be reasonably inferred as

coverage is approximately 382 843 km2, yielding a den-

sity of 2.5 3 1024 sites per kilometer squared. This

coverage provides an opportunity to assess the model

performance over a comparably dense monitoring

network. Fodor and Mika (2011) inspected 109 sites

spread across the contiguous United States and Hawaii

(;8 311 200 km2; 1.33 1025 sites per kilometer squared).

Bechini et al. (2000) inspected 29 stations in northern Italy

(;100 408 km2; 2.8 3 1024 sites per kilometer squared).

The density of coverage for this study is thus almost 20

times denser than the dataset used by previous studies in

North America (Fodor and Mika 2011).

b. Decomposing global solar radiation and model
construction

Global solar radiation can be deconstructed into three

elements: ETR, CST, and FCD. Doing so provides a

simple approach for addressing seasonal cycles, effects

FIG. 1. The Montana, North Dakota, and South Dakota sites of

the AWDN network. Three sites mentioned in the text, Redfield,

Takini, and Brookings, are denoted with a square, a diamond, and

a circle, respectively. The bulleted sites are the sites that did not

have enough data to create valid CST Fourier series. Top figure

shows the location of North and SouthDakota in theUnited States.
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of elevation, and atmospheric attenuation indepen-

dently. The historical context of this deconstruction is

discussed in section 2, with details of how each compo-

nent was calculated below. In this study, calculations

for ETR and CST are essentially unchanged from past

studies. The beta regression model we are proposing is

intended to improve upon past methods for predicting

FCD.

ETRwas calculated using methods described in Gates

(1980). In this method, day of year, latitude, distance to

sun, and declination (derived using latitude) are deter-

mined for each site and for each day on which data are

available. The calculation of ETR accounts for seasonal

changes in the solar radiation. The solar constant is

considered to be 1366 W m22.

The annual course of CST is typically cyclical with

relatively small amplitude and asymmetrical peaks (Fodor

andMika 2011). Daily sky transmissivity (ST) values were

determined for each data point (1 day21). Therefore, if

a dataset is 10 years long, there will be 10 ST values for

each yearday, or each unique date. Maximum ST values

were extracted for each yearday using a 7-day moving

window (Thornton and Running 1999) in case a reliable

maximum cannot be captured in a relatively short dataset.

These maximums were then fitted with the second-order

Fourier series shown as Eq. (8) (Fodor and Mika 2011):

y5 a1 b cos(x)1 c sin(x)1 d cos(2x)1 e sin(2x) , (8)

where x5 2p(yearday/366) and a, b, c, d, and e are fitted

constants.

This was done for each site individually, resulting in

each site having an associated set of values for the

Fourier series parameters. CST was modeled yearly,

regardless of whether FCD was analyzed in seasonal

strata or not. The effects of individual site characteristics

on GSR are accounted for in the calculation of CST.

Where GSR data are observed, FCD can be easily

calculated by rearranging Eq. (3):

FCD5GSR3ETR213CST21 , (9)

Where GSR is not observed, FCD can be predicted us-

ing temperature and other climate variables. For this

step, the proposed beta regressionmodel is implemented.

For comparison, other methods are briefly presented

here.

Bristow and Campbell (1984) suggested

FCD5 a[12 exp(2bDTc] , (10)

whereDT is calculated as shown in Eq. (2) and a, b, and c

are fitted constants.

Fodor and Mika (2011) correctly point out that this

and other previous models are inappropriately forced

through the origin (Bristow and Campbell 1984; Donatelli

andMarletto 1994; Donatelli and Campbell 1998), such

that as DT approaches zero FCD approaches zero. They

then propose a strictly monotonic equation that is not

forced through the origin:

FCD5 12
12 a

[11 (bDT)c]d
, (11)

where a, b, c, and d are parameters that are empirically

fitted for each site.

This model was found to produce smaller errors than

a previous study byDonatelli andCampbell (1998). Error

was further reduced when separate analyses were per-

formed by season (winter, spring, summer, and fall) and

precipitation (wet versus dry). Therefore, eight unique

models were required for each site. In this study, FCD

is predicted using beta regression. For model fitting,

observed values of FCD are calculated using data from

sites and days where GSR is measured [Eq. (9)]. Once

fitted, the resulting regression equation can be used to

predict FCD at locations and on days where explana-

tory variables are obtained but no measurement of GSR

exists. This technique provides locally relevant parameter

estimates such that a regression equation that has been

fitted using nearby data can be used to predict FCD at a

location that does not measure GSR.

There are multiple studies that review the implemen-

tation of beta regression models (Cribari-Neto and Zeileis

2010; Ferrari and Cribari-Neto 2004; Ospina et al. 2006;

Rocha and Simas 2011; Simas et al. 2010; Smithson and

Verkuilen 2006) and related model diagnostics (Chien

2010; Espinheira et al. 2008a,b). Interested readers are

encouraged to consult these for further information on

beta regression implementation. Here we construct an

example of how the beta regression model may be ap-

plied to predictions of daily GSR using data from one

station. These results will be compared with the Fodor

and Mika model. Data collected at the Takini site from

2005 to 2009 are used to fit a beta regression model in-

corporating multiple climatic predictors The resulting

parameters are used to make predictions for the 2010

Takini site data. We then extend the model to a solar

monitoring network composed of 92 stations. GSR is

calculated using FCD predictions from both the beta

regressionmodel and the Fodor andMika (2011) model.

We assess the performance of the beta regression model

and its ease of use, and make recommendations re-

garding how it can be implemented. Because of the

flexibility of the beta regression model, a binary variable

for wet days was created as well as a continuous variable
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that is simply precipitation in millimeters. Model selec-

tion for the beta regression model was done using

Akaike information criterion (AIC). Beta regression was

implemented in R (R Development Core Team 2009)

using the betareg package (Cribari-Neto and Zeileis

2010).

c. Prediction intervals for GSR

Since each predicted value of FCD is a beta distrib-

uted value, yi ;b(ui,fi), then its distribution can be

described with m and u. The 0.025 percentile can be

considered the lower bound, and the 0.975 percentile

can be considered the upper bound. These parameters,

m and u, each have an associated uncertainty that is not

incorporated into the uncertainty interval of FCD. The

failure to account for this uncertainty is what distin-

guishes this estimate from a true prediction interval;

however, it can be used similarly. The lower and upper

bounds for the FCD uncertainty interval can be used to

predict the upper and lower bounds for GSR.

True prediction intervals can be estimated. One could

perform a simulation using predicted m and u for the

new data, or a Bayesian approach could be used. Be-

cause of the high number of models run for this study,

neither of thesemethods was used.However, they are an

appropriate approach when analyzing one dataset using

a single model.

d. Model comparisons

RMSE, MAE, and MSD (an indicator of bias), were

used to compare each of the Fodor and Mika models—

one for each season and precipitation (wet vs dry)

combination—to a beta regressionmodel using the same

subsets of data. Several studies have shown that per-

forming separate analyses for each subset reduced error

and bias (Allen 1997; Fodor and Mika 2011; Samani

et al. 2011). Ease of fit was determined by comparing the

number of times computational efforts to fit each model

failed to converge. This could manifest itself by not pro-

ducing parameter estimates, or producing estimates that

are essentially zero or infinite. For models that failed to

converge, 3000 attempts were made fully encompassing

all possible values based on Fodor and Mika (2011) and

the analysis described in this paper.

To determine if subsetting was necessary for the beta

regression model, all sites were analyzed with yearday

converted into sine and cosine components. This elimi-

nated the need for separate analyses for each season.

Precipitation was entered as a continuous variable elim-

inating the need for separate analyses for wet and dry

days. In this way, an entire dataset can be evaluated in

one model. Total RMSE from the stratified models was

compared to the RMSE for the combined model to de-

termine if loss of information occurred.

To test spatial interpolations of the fittedmodels, each

site was analyzed using CST as well as the beta model

fitted from the nearest site. The rate at which the ob-

served value was captured by a 95% uncertainty interval

was compared to capture rates obtained for that site

using the site-specific CST and fitted model.

5. Results and discussion

CST was fitted for all stations [Eq. (8)]. As an exam-

ple, an envelope curve for the Brookings weather station

(Fig. 2) had the following fitted parameters; a 5 0.7789,

b 5 0.0130, c 5 0.0193, d 5 20.0157, and e 5 0.0067.

a. Fitting the Fodor and Mika model

The data were subset as recommended (Fodor and

Mika 2011). For each season, wet and dry days were split

into two groups. Each of the eight resulting groups was

analyzed. For one of the eight models, wet winter days,

at the Redfield site, the Fodor and Mika failed to con-

verge. The total number of winter days with precip-

itation available for analysis was 96; not an uncommonly

small sample size when considering sample sizes from

the AWDN network (Fig. 3). Traditionally, it is thought

that a sinusoidal curve best represents the relationship

between change in temperature and FCD. Most analy-

ses herein support this belief; however, this relationship

is not ubiquitous. Close inspection of the wet winter

days subset for the Redfield site lack this sinusoidal

FIG. 2. Transmissivity plotted against day of year (yearday) for

all available years. The Fourier series fitted envelope curves

through the maximums for each yearday and is considered the

fitted CST.
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relationship (Fig. 4). This could be due to the sample

size, a different relationship between these two variables

at this site during the winter season, or a combination of

both. Regardless, forcing a sinusoidal curve through the

points shown in Fig. 4 leads to poor parameter identifi-

ability. The entire dataset (92 sites, 4 seasons, and 2 strata

for wet and dry days) was analyzed using the Fodor and

Mika model. Of the 736 possible models, 236 (32%)

failed to converge when using standard nonlinear re-

gression techniques (Nelder and Mead 1965; Shanno

1970) implemented in R (Nash 1990; R Development

Core Team 2009).

Fitting the beta model was not problematic. The beta

regression model was far more robust to this non-

identifiability issue than the Fodor and Mika (2011)

model. Additionally, theoretical principles are available

that yield estimates of uncertainty surrounding predi-

cted response values (prediction intervals). Estimates of

uncertainty for nonlinear regression do exist but often

rely on asymptotic estimates of variance for parameters

(Goh and Pooi 1997).

b. Fitting the beta regression model at the Takini site

Following standard procedures for beta regression

(Cribari-Neto and Zeileis 2010; Ferrari and Cribari-

Neto 2004; Smithson and Verkuilen 2006), the 2005–09

dataset for dry spring days at the Takini station was

analyzed. The resulting model parameters were used to

construct predictions for the 2010 Takini dry spring days

dataset. An initial inspection of the explanatory vari-

ables (Fig. 5) suggests there is notable correlation be-

tween relative humidity and both DT (r 5 20.70) and

adjusted DT (r520.72). This multicollinearity is a con-

cern only if inferences regarding the estimates of co-

efficients in the final fitted model are desired. For

prediction purposes, multicollinearity is of little concern.

To fit the sinusoidal relationship between DT and

FCD, a squared and cubic DT term were added to the

beta regression model. This is a standard approach for

fitting nonlinear relationships in a linear model. In-

spection of the correlation matrix (Fig. 5) suggests that

FCDand subsequently solar radiationmight also display

FIG. 3. A histogram of the sample sizes for the 99 sites. The strata

are season and precipitation. Note the high frequency of relatively

low sample sizes. This causes problems in fitting models that are

limited only to one stratum at a time.

FIG. 4. (left) Data from dry summer days at Redfield. For this dataset, the sinusoidal curve is shown fitted to the

data. (right) Data fromwet winter days at the same site. Note the lack of sinusoidal structure to the data. Attempts to

fit these data with a four-parameter sinusoidal curve led to a variety of possibilities. Nonidentifiability of model

parameters was an issue.
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a nonlinear response to low temperature and relative

humidity, therefore squared terms were added for each

of those variables. The initial covariates in the beta re-

gression model were DT, DT2, DT3, relative humidity

(average of the day), relative humidity squared, daily

low temperature, and daily low temperature squared.

Two- and three-way interaction terms were allowed

between DT, relative humidity, and low temperature.

AIC values were calculated for each possible model

that maintained the squared and cubic DT terms. The

three models with the lowest AIC value were (from

more to less complex) 1) the full model with all vari-

ables (AIC 5 2506.74); 2) the full model with the one

three-way interaction term removed and the two-way

interaction between DT and low temperature removed

(AIC52506.05); and 3) the model with all of the single

covariates and only one interaction term, relative hu-

midity andDT (AIC52506.14). In addition, there were

two other models that hadAIC values that were within 3

of the best model (DAIC , 3). For the purpose of in-

terpreting the estimates of the coefficients, model se-

lection techniques can be used to determine the best

model (Burnham and Anderson 2002), but for the pur-

poses of prediction, any of thesemodelsmay be assumed

to work reasonably well. The precision parameter u for

the full model was 11.5 (SE5 0.9343). As an example of

calculating an uncertainty interval, 22 April 2010, had

a low temperature of 5.258C, a DT of 12.008C, and an

average relative humidity of 72.76% at the Takini site.

The observed FCDwas 0.4104 and the predicted FCD is

0.6497. Predicted CST was 0.813, and ETR was 34.718.

The observed GSR value was 11.589 MJ m22 day21

FIG. 5. A simple correlation matrix showing how FCD is correlated with the independent variables and how the

independent variables are correlated with each other. Numbers in the panels are the correlation value r.
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and the predicted GSR is 18.347 MJ m22 day21. The

uncertainty interval has lower and upper confidence

bounds of 10.36 MJ m22 day21 and 18.34 MJ m22 day21

respectively, which capture the observed solar radia-

tion value of 11.589 MJ m22 day21.

This uncertainty could then be incorporated into all

subsequent models that use estimated solar radiation as

in input. In the previous example, CST is considered with-

out error; however, it is a predicted rather thanmeasured.

We incorporated the uncertainty in CST and found a

negligible change in the final estimate for dGSR and ulti-

mately omitted it from the final analysis.

For this subset, the 95% uncertainty intervals for the

Takini 2010 test dataset are shown in Fig. 6. These in-

tervals captured the real value 100% of the time. This is

not entirely surprising given the sample size of 46. How-

ever, for some purposes, a smaller prediction interval may

be required. If smaller prediction intervals are desired,

90% intervals can be calculated by calculating the ap-

propriate percentile from the resulting distribution.

c. Capture rates for the beta regression model

The full beta regression model was used to analyze

the dry strata for 92 sites across the four seasons to de-

termine what proportion of the observations were cap-

tured by the 95% prediction limits (referred to as the

rate of capture). Subsets with less than 15 days available

for fitting the model, or less than 7 days for testing the

model were left out. There were 4 station–season com-

binations that were omitted for this reason. The average

rate of capture of the true value was 93.05%, with a high

of 100% and a low of 50%. In this latter case, there were

only eight usable days from the dry strata, fall season,

2010 dataset (site5Aurora). Clearly, when dealing with

networks of solar monitoring sites, there will be cases

such as these that require individual attention. The

average capture rates for winter, spring, summer, and

fall were 97.81%, 95.86%, 94.50%, and 93.96%, re-

spectively. To assess overall model fit, observed GSR

was plotted against predicted GSR and the correlation

was calculated (Fig. 7). This was done for all usable sites

and subsets of data. The average correlations of observed

GSR and predicted GSR on dry days for winter, spring,

summer, and fall were 0.88, 0.78, 0.83, and 0.92, re-

spectively. There were more station–season combina-

tions that did not meet the minimal criteria for testing

when inspecting wet days (n5 142). The overall average

rate of capture of the true value for wet days was

89.89%, with a high of 100% and a low of 9.10%. In the

latter case, there were 11 usable days in the 2010 test

FIG. 6. Predicted GSR values plotted against observed GSR

values with 95% prediction intervals shown. Data used were from

dry spring days in Takini.

FIG. 7. Box plots showing the overall distributions of correlations between predictedGSR and observedGSR broken

down into seasons and (left) dry and (right) wet days.
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dataset. The average capture rates for winter, spring,

summer, and fall were 82.88%, 92.53%, 93.30%, and

77.30%, respectively. The correlations of observed GSR

and predicted GSR on wet days for each season were

0.58, 0.84, 0.86, and 0.83, respectively. The beta regression

model tended to underestimate high values of solar ra-

diation (Fig. 8) and overestimate low values. Overall,

this is a smaller problem in winter than in the other sea-

sons and is possibly indicative of a missing variable in the

model or a bias in instrumentation.

Note that the parameters a, b, c, and d in Fodor and

Mika (2011) have very little interpretable value. A

particularly high value of a does not tell researchers

anything about the relationship between FCD andDT. In
contrast, all inferential properties of generalized linear

models apply to the beta regression model, as long as all

standard regression diagnostic criteria are addressed.

Standard methods of model selection can be applied to

the beta regression approach and model inferences can

be made.

d. Model comparison

Solar radiation predictions were made for all subsets

of data that were successfully fitted using the Fodor and

FIG. 8. Predicted GSR plotted against observed GSR for each of the four seasons using data from dry days. The

tendency to underestimate days of high GSR is prevalent throughout all 92 sites, although in general, this is a bigger

problem in the summer and spring and less of a problem in winter. Capture rates are the rates at which the 95%

prediction interval captured the observed value.
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Mika (2011) model and compared to predictions esti-

mated using the beta regression model (Table 2) for

the Takini site. In each case, CST was derived using a

Fourier series (Fodor and Mika 2011). For each dataset,

theDT values were smoothed using Eq. (2). However, as

was shown previously, using Eq. (1) led to better results

(Thornton and Running 1999). Therefore, all models

were run again using only the change in temperature

for the day of interest. This yielded lower errors for all

models and has the additional advantage of being less

susceptible to erroneous values in the event of missing

data (e.g., if day i 1 1 is missing, then calculation for

day i is not jeopardized). The RMSE, MAE, and MSD

shown (Tables 2 and 3) are based on the residuals for

actual versus predicted GSR. Similar results can be

shown for actual FCD versus predicted FCD, but since

the intent of these models is to ultimately predict solar

radiation, results for GSR were compared. In all cases

the RMSE and the MAE for the beta regression models

were smaller than the Fodor and Mika model by an

average of 10.28 MJ m22 day21, with the lowest de-

crease being 3.34 MJ m22 day21, and the largest

decrease being 16.22 MJ m22 day21. The MAE de-

creased for the beta regression model by an average

of 3.00 MJ m22 day21, with the lowest decrease be-

ing 0.75 MJ m22 day21, and the largest decrease be-

ing 6.23 MJ m22 day21. The mean signed deviance

was larger for the beta regression model in 5 of the 7

cases. This increase in bias averaged 0.88 MJ m22-

day21, a full order of magnitude less than the decrease

inRMSE. Therefore, the relatively small increase in bias

is negated by the substantial decreases in RMSE and

MAE in all 7 cases.

Each of the 92 sites was analyzed for each season and

precipitation strata to determine if this pattern was

consistent throughout the study area. The beta regression

model outperformed the Fodor and Mika model with

reduced RMSE and MAE (Table 3) for virtually every

strata and every usable site. Overall, the RMSE was re-

duced an average of 17% and the MAE by 24%. The

MSD was generally higher in the beta regression model

but in every case by less than 0.25 MJ m22 day21. This

slight increase in bias should not be a problem for most

analyses.

TABLE 2. Comparisons of the Fodor and Mica model (F&M) and the beta regression model. Where N/A is shown, the Fodor andMica

model was unable to be fitted. In all cases the RMSE andMAEwere lower for the beta regression model. In six cases, the bias (MSD) was

lower for the F&Mmodel but note the units are all in megajoules per meter squared per day and that the increase in bias is very small. This

table uses data from the Redfield site.

RMSE

(MJ m22 day21)

MAE

(MJ m22 day21)

MSD

(MJ m22 day21)

Season Precipitation Beta F&M Beta F&M Beta F&M

Winter Wet 24.791 N/A 6.025 N/A 20.069 N/A

Dry 121.160 128.242 6.840 7.664 0.010 0.037

Spring Wet 125.006 134.704 28.831 33.478 20.267 0.049

Dry 207.640 222.446 24.427 28.035 20.056 20.015

Summer Wet 108.674 122.772 22.538 28.765 20.181 0.058

Dry 179.974 196.199 18.701 22.225 0.090 0.042

Fall Wet 44.805 48.143 8.766 10.121 20.331 20.036

Dry 108.659 115.353 5.886 6.633 20.011 20.003

TABLE 3. Comparisons of the F&M model and the beta regression model. In all cases the RMSE and MAE were lower for the beta

regression model. In five cases, the bias was lower for the F&Mmodel but note the units are all in megajoules per meter squared per day

and that the increase in bias is very small. This table uses all data from 92 sites.

RMSE

(MJ m22 day21)

MAE

(MJ m22 day21)

MSD

(MJ m22 day21)

Season Precipitation Beta F&M Beta F&M Beta F&M

Winter Wet 26.34 31.66 4.72 6.82 0.094 0.012

Dry 89.08 95.22 4.7 5.37 0.126 0.076

Spring Wet 96.00 111.2 17.97 24.1 20.196 0.044

Dry 145.38 164.36 15.32 19.58 0.022 20.052

Summer Wet 86.63 109.3 12.87 20.49 20.023 0.137

Dry 110.84 124.57 9.36 11.82 0.06 0.074

Fall Wet 34.38 43.33 4.19 6.66 20.077 20.027

Dry 78.85 83.82 3.85 4.34 0.045 0.005
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e. Combining subsets for the beta regression model

When inspecting data output from networks of solar

monitoring sites, it is not unusual to have low sample

sizes for numerous subsets of data (Fig. 3). This problem

can be alleviated by combining groups. A single beta

regression model was used to analyze the Redfield data

to determine if seasonal (spring, summer, etc.) and cli-

mate (wet versus dry) grouping is necessary. The year-

day variable was transformed to radians (as it is circular

data) and the sine and cosine components were entered

into the model as covariates. Precipitation was left in the

model as a continuous variable. The resulting RMSEwas

19.735, which is lower than the RMSE from each of the

individual models run on separate strata (19.989). This

indicates that indeed one model per site can outperform

eight separate models for the same site. The beta regres-

sion approach allows for the introduction of numerous

continuous variables and is the reason this reduction in

subsetting without a loss of information is possible.

f. Interpolating between stations

There are advantages to using data from networks of

solar monitoring sites despite less accurate solar radia-

tion measurements. For instance, if site density is suffi-

cient, Thiessen polygons (Brassel and Reif 1979) will

suffice for spatial interpolation.An analysis was performed

using the fitted CST Fourier series and the fitted beta re-

gression model coefficients from the nearest site to test if

Thiessen polygons were appropriate for spatial in-

terpolation. All available data were used (up through

2010). Predictions intervals were calculated as previously

described and capture rates were recorded. This was done

for each site, for each season, and for dry andwet days. The

overall mean capture rate was 92.89%. The average cap-

ture rate for dry days for winter, spring, summer, and fall

were 94.14%, 93.11%, 92.07%, and 92.21%, respectively.

The maximum rates were 98.81%, 98.84%, 98.03%, and

99.10% and the minimums were 80.54%, 80.80%, 71.04%,

and 47.15%. For wet days, the overall mean capture rate

was 81.27%. The average capture rate for dry days for

winter, spring, summer, and fall were 69.83%, 87.46%,

89.57%, and 77.05%, respectively. The maximum rates

were 96.44%, 97.61%, 99.46%, and 100% and the mini-

mums were 69.81%, 87.41%, 89.53%, and 76.94%. These

capture rates indicate that Thiessen polygons are sufficient

for spatial interpolation of beta regression parameters

within networks of solar monitoring sites.

6. Conclusions

We applied a beta regression model to predict global

solar radiation and compared results to recently pro-

posed empirical solar radiation (DT) models. The beta

regression method resulted in a lower RMSE and MAE

than recently proposed models (Fodor and Mika 2011)

that have outperformed historical models (Bristow and

Campbell 1984; Donatelli and Marletto 1994; Donatelli

and Campbell 1998). Beta regression can be easily im-

plemented in free software (RDevelopment Core Team

2009) using the betareg package (Cribari-Neto and Zeileis

2010). This allows for a more robust and simpler model

fitting method than previously proposed nonlinear

methods. The parameters obtained using beta regressions

are easily interpreted, if all diagnostic criteria (Chien

2010) are addressed. For example, certain regions, cli-

mate types, or strata may show common tendencies

toward models with or without certain predictors

(relative humidity, low temperature, etc.). Lower and

upper bounds for estimates of FCD can be used to predict

upper and lower bounds forGSR.This is helpful not only as

a measurement of uncertainty for GSR, but also for sub-

sequent models that incorporate GSR. This uncertainty is

reflected in the prediction intervals provided, which can be

larger than desired for some applications. While estimates

of uncertainty appear large, we contend that previous

methods of estimating GSR also possess large amounts of

uncertainty, but the uncertainty was never estimated

(Fodor andMika 2011) and is consequently unavailable for

inspection or use in subsequent models.

The beta regression method is flexible: it can be ex-

panded if additional meteorological variables are avail-

able at a specific location, or it can be reduced if some

variables are shown to be insignificant or unavailable.

Because beta regression allows for a multiple regression

analysis, variables such as time and precipitation that

have been previously analyzed by subsetting the data

can be incorporated into one model, which allows site–

season combinations that previously had too few data

points to analyze to be analyzed. The distribution pa-

rameters that accompany the predictions of a beta re-

gression model can be used to estimate uncertainty in

the final prediction of global solar radiation. To determine

how well these models could be used at locations where

no GSR data exist, each site was analyzed using the

nearest neighbor. Predictions made using Thiessen poly-

gons and beta regression parameters have slightly lower

capture rates (mean of 93.16%) of the observed value

using a 95% prediction interval. We have outlined a flex-

ible modeling approach that allows for the addition and

removal of independent variables as appropriate, accom-

panying measures of uncertainty, and ease of operation.
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